Robust Visual Tracking Based on an Effective Appearance Model
نویسندگان
چکیده
Most existing appearance models for visual tracking usually construct a pixel-based representation of object appearance so that they are incapable of fully capturing both global and local spatial layout information of object appearance. In order to address this problem, we propose a novel spatial LogEuclidean appearance model (referred as SLAM) under the recently introduced Log-Euclidean Riemannian metric [23]. SLAM is capable of capturing both the global and local spatial layout information of object appearance by constructing a block-based Log-Euclidean eigenspace representation. Specifically, the process of learning the proposed SLAM consists of five steps—appearance block division, online Log-Euclidean eigenspace learning, local spatial weighting, global spatial weighting, and likelihood evaluation. Furthermore, a novel online Log-Euclidean Riemannian subspace learning algorithm (IRSL) [14] is applied to incrementally update the proposed SLAM. Tracking is then led by the Bayesian state inference framework in which a particle filter is used for propagating sample distributions over the time. Theoretic analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed SLAM.
منابع مشابه
Visual tracking via dynamic tensor analysis with mean update
The appearance model is an important issue in the visual tracking community. Most subspace-based appearance models focus on the time correlation between the image observations of the object, but the spatial layout information of the object is ignored. This paper proposes a robust appearance model for visual tracking which effectively combines the spatial and temporal eigen-spaces of the object ...
متن کاملSpatio-Temporal Auxiliary Particle Filtering With ℓ1-Norm-Based Appearance Model Learning for Robust Visual Tracking
In this paper, we propose an efficient and accurate visual tracker equipped with a new particle filtering algorithm and robust subspace learning-based appearance model. The proposed visual tracker avoids drifting problems caused by abrupt motion changes and severe appearance variations that are well-known difficulties in visual tracking. The proposed algorithm is based on a type of auxiliary pa...
متن کاملEffective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filte...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کامل